
J Stat Phys (2007) 128: 1365–1382
DOI 10.1007/s10955-007-9380-3

Injected Power Fluctuations in 1D Dissipative Systems

Jean Farago · Estelle Pitard

Received: 15 March 2007 / Accepted: 13 July 2007 / Published online: 22 August 2007
© Springer Science+Business Media, LLC 2007

Abstract Using fermionic techniques, we compute exactly the large deviation function (ldf)
of the time-integrated injected power in several one-dimensional dissipative systems of clas-
sical spins. The dynamics are T = 0 Glauber dynamics supplemented by an injection mecha-
nism, which is taken as a poissonian flipping of one particular spin. We discuss the physical
content of the results, specifically the influence of the rate of the Poisson process on the
properties of the ldf.

Keywords Glauber dynamics · Spin systems · Large deviation functions · Free fermions ·
Stochastic systems · Fluctuation theorem

1 Introduction

Fluctuations in nonequilibrium systems have attracted interest of physicists and mathemati-
cians in recent years, due to fortuitous conjunctions of experiments [1, 2], which aimed at
measuring and understanding the fluctuations of global variables in hydrodynamic experi-
ments, and theoretical works [3–5], having stated new relations for the entropy production in
some classes of nonequilibrium systems (the fluctuation theorems). This simultaneity was
actually the cause of some bold assertions surmising a wider application of the so-called
fluctuation theorems to dissipative systems [6, 7], whereas these relations were nothing but
a manifestation of the time-reversal symmetry of the bulk dynamics. These conjectures were
enforced by the apparent validity of the fluctuation relations in experiments and simulations,
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which yields incidentally a characteristic energy sometimes daringly termed “nonequilib-
rium temperature”. Despite the fact that it has been convincingly proven that this apparent
validity is only due to our inability of probing the large deviation functions of injected power
in zones of negative injected power [8–13], it is however interesting to show explicit exam-
ples of dissipative systems where the large deviation function (ldf) of injected power can be
exactly computed, all the more so there exists very few such exact calculations on dissipa-
tive systems [9, 10, 14–16], for which the absence of detailed balance condition makes the
situation more difficult to handle.

Moreover, for conservative systems in nonequilibrium stationary states, interesting re-
lations on the related ldf of integrated current have been discovered recently [17], and it
is interesting to compare the classes of conservative and dissipative systems as regards the
fluctuations of the global variable associated with the external excitation (the very cause of
the nonequilibrium state).

In this paper, we consider a 1D system of 2N (N → ∞) classical spins on a ring, labelled
from −N to N − 1, updated according a T = 0 Glauber dynamics, and supplemented by
an injection mechanism. The T = 0 Glauber dynamics is defined as follows: the probability
for a spin sj to flip between t and t + dt is given by dt[1 − sj (sj−1 + sj+1)/2], that is, sj

flips with a rate 1 if its neighbours are in different states, cannot flip if sj = sj−1 = sj+1 and
flips with a rate 2 if −sj = sj−1 = sj+1. It is important to mention that these dynamics are
dissipative: a flip either does not modify the energy of the system, or lessens it. As a result,
energy must be injected by an additional mechanism of injection in order to drive the system
into a nontrivial stationary state. We will consider two different models of injection: for both
models (labelled I and II hereafter), only the zeroth spin s0 (the “external boundary” of the
system) flips randomly as a Poisson process with a parameter λ. The difference between the
two models lies in the ability of the zeroth spin, besides the poissonian flip, to spontaneously
flip under the Glauber rules (model II) or not (model I); it is qualitatively more important
than it could appear, as in one case (model II) both halves of the system are dynamically
connected in the vicinity of s0 when in the other (model I) they are disconnected. In the
thermodynamic limit, model I can be viewed as two independent identical systems driven
out of equilibrium by s0.

For these systems, we computed exactly f (p), the large deviation function of the injected
energy, a major observable associated with the fluctuations of the energy flux in stationary
systems. It is defined as

f (p) = lim
τ→∞ τ−1 log Prob((energy injected between 0 and τ )/τ = p). (1)

As the dynamics are stochastic, no explicit formula can be put forward for � the energy
injected in the system by the λ Poisson process from t = 0 to t = τ , but fortunately such
expressions are not needed for our purpose. In Sect. 2, we expose the dynamics of the models
in greater detail, as well as the computation and the exact results for g(α), the ldf of the
characteristic function. In Sect. 3 we numerically solve the inverse Legendre transforms and
get the ldfs for the injected energy for the two models considered here. We discuss their
physical properties, in particular their variations with respect to the change of the injection
rate.

2 Fermionic Approach to the Injected Power

It is useful to describe spin systems in the dual representation of the domain walls: between
the site 0 and 1 is located the locus of a possible domain wall labelled 0, and so forth. The
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state of the system is thus characterized by C = (n−N, . . . , n−1, n0, n1, n2, . . . , nN−1), where
the ni are either 0 (no domain wall) or 1. There is 22N possible states in this representation,
in contrast with the spin representation where a degeneracy s ↔ −s doubles this number.
The dynamical equation for the probability is given by

∂tP (C) = λ[P (C0) − P (C)] +
∑

j

[P (Cj )w(Cj → C) − P (C)w(C → Cj )], (2)

where Cj holds for the state C whose domain wall variables nj and nj−1 have been changed
(according to n → 1 − n). The T = 0 Glauber dynamics corresponds to

w(Cj → C) = 2 − nj − nj−1, (3)

w(C → Cj ) = nj + nj−1, (4)

where nj and nj−1 are the variables associated with the state C (we use this convention
hereafter). Note that models I and II differ in the preceding equations in the way the sum-
mation over j is carried out: either it is not restricted (model II), or index j = 0 is implicitly
removed (model I).

We consider that each domain wall contributes as a quantum of energy 1 to the global
energy of the system. We are interested in the energy � injected into the system up to time
t by the poissonian injection. Following [18], the route to this time integrated observable
begins with the consideration of the joint probability P (C,�, t), the probability for the
system to be in the state C at time t having received the energy � from the injection. The
dynamical equation for this quantity is readily

∂tP (C,�) = λ{P (C0,� − 2)n0n−1 + P (C0,� + 2)(1 − n0)(1 − n−1)

+ P (C0,�)[(1 − n0)n−1 + (1 − n−1)n0] − P (C,�)}
+

∑

j

[P (Cj ,�)w(Cj → C) − P (C,�)w(C → Cj )]. (5)

We define next the generating function of � as

F(C) =
∞∑

�=−∞
eα�P (C,�). (6)

This quantity, summed up over the states, yields the generating function 〈exp(α�)〉 from
which one derives its ldf g(α):

〈eα�〉 �
t→∞ etg(α). (7)

This ldf g(α) is closely related to f (p), the ldf of the probability density function of �, as
they are Legendre transform of each other [9]:

Prob(�/t = p) ∝
t→∞ exp(tf (p)), (8)

f (p) = min
α

(g(α) − αp). (9)
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Let us write the dynamical equation for F :

∂tF (C) = λ[e2αF (C0)n0n−1 + e−2αF (C0)(1 − n0)(1 − n−1)

+ F(C0)[(1 − n0)n−1 + (1 − n−1)n0] − F(C)]
+

∑

j

[F(Cj )(2 − nj − nj−1) − F(C)(nj + nj−1)]. (10)

The function g(α) is closely related to the dynamical matrix at work in the rhs of the pre-
ceding equation, since it is in general its largest eigenvalue. Thus, succeeding in computing
g(α) is not as complicated as knowing the whole dynamics (eigenvalues and eigenvectors),
but nevertheless it remains a difficult challenge, as the whole spectrum of the matrix has to
be known.

Fortunately, our problem belongs to the category of the “free-fermions” problems, for
which a diagonalization of the dynamics into independent “modes” can be achieved. To do
so, we construct the state vector as

|φ〉 =
∑

C

F(C)|C〉, (11)

where |C〉 is a vector in the 22N+1 dimensional tensorial product of the space of states of
domain walls (each of dimension 2). The dynamical evolution of |φ〉 yields expressions like∑

C F(C0)n0n−1|C〉 which can be represented as

∑

C

F(C0)n0n−1|C〉 =
∑

C

F(C0)̂n0n̂−1|C〉 (12)

= n̂0n̂−1

∑

C

F(C)|C0〉 (13)

= n̂0n̂−1σ
x
0 σx

−1|φ〉 = s−
0 s−

−1|φ〉, (14)

where

n̂ =
(

0 0
0 1

)
, σ x =

(
0 1
1 0

)
, s− =

(
0 0
1 0

)
(15)

(we will have use also of s+ = t (s−); note that s−s+ = n̂). Note that for the time being, op-
erators with different particle indices commute. Similar computations on other terms allows
to write the dynamical equation for |φ〉 as

∂t |φ〉 = H |φ〉 where (16)

H = λ[e2αs−
0 s−

−1 + e−2αs+
0 s+

−1 + s+
0 s−

−1 + s−
0 s+

−1 − 1]
+

∑

j

[2s+
j−1s

+
j + s+

j−1s
−
j + s−

j−1s
+
j − s−

j s+
j − s−

j−1s
+
j−1]. (17)

The fermionization of this “Hamiltonian” proceeds using the Jordan–Wigner transformation

c−N =
def

s+
−N, (18)

c
†
−N =

def
s−
−N, (19)
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cj =
def

s+
j σ z

−Nσ z
−N+1 · · ·σ z

j−1, (20)

c
†
j =

def
s−
j σ z

−Nσ z
−N+1 · · ·σ z

j−1, (21)

where

σ z =
(

1 0
0 −1

)
(22)

is the third Pauli matrix. A major change provided by this transformation is that now oper-
ators with different indices do no longer commute. Instead, it can be verified that for all i

and j

{ci, cj } = 0, (23)

{c†
i , c

†
j } = 0, (24)

{c†
i , cj } = δi,j , (25)

where the bracket is defined by {a, b} = ab+ba. These relations, characteristic of fermionic
operators, yields a useful rewriting of the dynamical operator

H = λ[e2αc
†
−1c

†
0 + e−2αc0c−1 + c

†
0c−1 + c

†
−1c0 − 1]

+
∑

j

[2cj cj−1 + c
†
j cj−1 + c

†
j−1cj − c

†
j cj − c

†
j−1cj−1]. (26)

The change of variables c̃† = eαc†, c̃ = e−αc is compatible with the fermionic structure and
allows the rewriting of the preceding equation (we omit the tildes in the following):

H = λ[c†
−1c

†
0 + c0c−1 + c

†
0c−1 + c

†
−1c0 − 1]

+
∑

j

[2e2αcj cj−1 + c
†
j cj−1 + c

†
j−1cj − c

†
j cj − c

†
j−1cj−1]. (27)

In order to achieve the diagonalization, we follow the route described in the Appendix. It is
important to stress that a Fourier transformation of the fermionic variables would not help,
because our systems are not translationaly invariant: a Fourier transform would have spread
the contribution of the spin 0 over the whole system, allowing no real simplification. The
Hamiltonian can be written as

H =
∑

q


q

(
ξ †
q ξq − 1

2

)
− 2N + 1 − ε − λ, (28)

where ξq, ξ
†
q are new fermionic variables related to cj and c

†
j by linear transformations

(explained in the Appendix) and ε is defined by:

ε =
{

0 (model I),

1 (model II).
(29)

The largest eigenvalue of H is thus given by

g(α) = 1

2

∑

q

|
q | − 2N + 1 − ε − λ, (30)
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provided all the 
q are real. If one takes into account possible complex eigenvalues, g(α)

will be rather defined by

g(α) = 1

2

∑

q

|Re(
q)| − 2N + 1 − ε − λ. (31)

As explained in the Appendix, {
q,−
q}q is the spectrum of the matrix

M0 =
(

A B

D −A

)
(32)

with the notations of the Appendix; moreover we can compute its characteristic polynomial
from (93), taking advantage of B almost empty. We define E(μ) = (A + μ)−1D(A − μ)−1

and (93) shows that we have to compute det(1 + BE); the matrix (1 + BE) is quite simple,
since B = λ(M−1,0 −M0,−1), where {Mij }ij is the canonical basis of the 2N × 2N matrices.
As a result BE is zero except on the lines −1 and 0, and one has

det(1 + BE) = (1 − λE−1,0)(1 + λE0,−1) + λ2E0,0E−1,−1 (33)

= (1 + λE0,−1(−μ))(1 + λE0,−1(μ)) + λ2E0,0(μ)E−1,−1(μ), (34)

where we exploited the fact that ET (μ) = −E(−μ). Note in passing that the symmetry
of this expression with respect to μ → −μ, demonstrated with general arguments in the
Appendix, is blatant here, as the Ejj are antisymmetric functions of μ.

A further simplification is provided by the fact that the physical system has itself a sym-
metry i ↔ −i −1 (expressed in the matrices A, B and D as Xi,j = X−j−1,−i−1) which gives
E00(μ) = −E−1,−1(μ) and E0,−1(μ) = E0,−1(−μ), whence

det(1 + BE) = [1 + λE0,−1(μ) + λE0,0(μ)][1 + λE0,−1(μ) − λE0,0(μ)]. (35)

The next step is to compute the elements (0, j) and (−1, j) of the matrix (μId − A)−1,
or equivalently the associated cofactors of μId−A, termed Cof(i, j). Precisely, we need the
cofactors Cof(0, j), and the others are obtained using Cof(i, j) = Cof(j, i) and Cof(i, j) =
Cof(−i − 1,−j − 1). We get:

[(μ − A)−1]0,j = Cof(0, j)

det(μ − A)
∼

N→∞

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[λ + ε]xj+1

(x + ε − 1)2 − (λ + ε)2
if j < 0,

[x + ε − 1]x−j

(x + ε − 1)2 − (λ + ε)2
if j ≥ 0,

(36)

where

x = μ + 2 ± √
μ2 + 4μ

2
(± such that |x| be maximum). (37)

After cumbersome computations, we get, for N → ∞:

χM0(μ) = G+(μ)G−(μ)
(x+x−)2N

μ4 − 16μ2
, (38)
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G+(μ) = (x+ − 1 + 2ε + λ)(x− − 1 − λ) + λ

[
λ + 2εe2α + 2e2α x− − x+

x+x− − 1

]
, (39)

G−(μ) = (x− − 1 + 2ε + λ)(x+ − 1 − λ) + λ

[
λ + 2εe2α + 2e2α x+ − x−

x+x− − 1

]
, (40)

x+ = μ + 2 + √
μ2 + 4μ

2
for Re(μ) > −2, (41)

x− =

⎧
⎪⎪⎨

⎪⎪⎩

−μ + 2 + √
μ2 − 4μ

2
for Re(μ) ∈ [0,2],

−μ + 2 − √
μ2 − 4μ

2
for Re(μ) > 2.

(42)

Finally, one has to combine this last result with (31). This is done via the formula

g(α) = 1

4iπ

∮
dμ

[
μ

χ ′
M0

(μ)

χM0(μ)

]
− 2N + 1 − ε − λ, (43)

where the contour for the complex integration is a big (big enough to enclose all singular-
ities of the meromorphic function) half-circle leant on the imaginary axis, with its belly in
the Re(μ) > 0 region, followed counterclockwise. The logarithmic derivative of χM0 yields
different additive contributions from (38). Let us consider first the contribution (x+x−)2N .
The integral

I = 2N

4iπ

∮
dμ

[
μ

x ′+
x+

+ μ
x ′−
x−

]
(44)

can be exactly computed, as the analytical singularities in the right half plane of x+ and
x− are located only on the real segments [−4,0] and [0,4] respectively; as a result, we can
compute this integral with a contour encircling [0,4] and sticking to it. Yet some care must
be taken however, for the actual expression of x− is not uniform on the whole half plane,
and notably on the real axis: whereas x+ is everywhere given on Re(μ) > 0 by [μ + 2 +√

μ2 + 4μ]/2, x− is given by [−μ+2+√
μ2 − 4μ]/2 for Re(μ) ∈ [0,2] and by [−μ+2−√

μ2 − 4μ]/2 for Re(μ) > 2. With all these precautions we get the simple result I = 2N .
This extensive term vanishes with the corresponding term coming from Tr(A), which is
coherent with the injection properties being asymptotically independent of the size of the
system (in our 1D model).

We can also compute easily the contribution of the term (μ4 − 16μ2)−1. The associated
integral yields −2, thence we can recast the expression for g(α) into

g(α) = 1

4iπ

∮
dμμ

[
G′+(μ)

G+(μ)
+ G′−(μ)

G−(μ)

]
− 1 − ε − λ. (45)

2.1 The Case α = 0

It is possible to verify partially the correctness of the formula. Indeed, when α = 0, we know
the value of g(α): g(0) = 0, that maximum eigenvalue being associated with the stationary
distribution (encoded in the corresponding eigenvector). Thus, we must verify this expected
result, which holds whatever the values of λ and ε.
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To do that, we rewrite the expressions for G+ and G− in a more transparent form. Using
the relations x2± − (±μ + 2)x± + 1 = 0, one can write

G+(μ) = (x− − 1)[(x+ − 1)(1 + 2λ/μ) + 2ε] + 2λ
e2α − 1

x+x− − 1
[ε(x+x− − 1) + x− − x+].

(46)

G− is easily obtained by switching x+ and x−, and making μ → −μ:

G−(μ) = (x+ − 1)[(x− − 1)(1 − 2λ/μ) + 2ε] + 2λ
e2α − 1

x+x− − 1
[ε(x+x− − 1) + x+ − x−].

(47)

2.1.1 ε = 0, α = 0

This case is the simplest, since G± = (x− − 1)(x+ − 1)(1 ± 2λ/μ) and the logarithmic
derivative yields six contributions. The two contributions coming from (x+ − 1) and the
contribution coming from (1 + 2λ/μ) yield zero, as no branch cut/poles are associated with
these functions in the half plane Re(μ) > 0. Thus, from (45),

g(0) = 1

4iπ

∮
dμμ

(
2x ′−

x− − 1
+ 1

μ − 2λ

)
− 1 − λ (48)

= 1

4iπ

∮
dμμ

2x ′−
x− − 1

− 1. (49)

The contour of integration can be stuck to the branch cut [0,4] (that is [0 → 4]− i0 followed
by [4 → 0] + i0). From 0 − i0 to 2 − i0, x−(μ = y − i0) = [−μ + 2 + √

μ2 − 4μ]/2 =
[−y + 2 + i

√
4y − y2]/2; from 2 − i0 to 4 − i0, the expression for x−(μ) is changed,

but the limit for μ sticking below the branch cut is such that one has still x−(μ =
y − i0) = [−y + 2 + i

√
4y − y2]/2. The expressions above the branch cut are just the com-

plex conjugates. As a result x− covers counterclockwise the set of complexes of modulus 1,
from z = 1 (μ = 0 − i0) to z = −1 (μ = 4 − i0) with positive imaginary parts, and from
z = −1 (μ = 4 + i0) back to z = 1 with negative imaginary parts. As a result, we get the
expected value:

g(0) = 1

2iπ

∮

|z|=1
dz

2 − z − z−1

z − 1
− 1 = 0. (50)

2.1.2 ε = 1, α = 0

The computation in that case is slightly different, in particular as regards the localization of
the singularities. The terms (x+ − 1) and (x+ + 1 + 2λμ−1(x+ − 1)) have no singularities
in the half plane under consideration (the singularity μ = 0 is avoided). The term (x− − 1)

yields a factor 1/2, as already computed. The term

x− + 1 − 2λμ−1(x− − 1) = −x− − 1

x−
(x2

− + 2λx− − 1) (51)
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is the richest, as it has not only a branch cut, but also displays an isolated pole for
μ = 2[1 + √

λ2 + 1]. Thus,

g(0) = − 1

4iπ

∮
dμμ

x ′−
x−

+ 1

2iπ

∮
dμμ

x ′−
x− − 1

− 1

2iπ

∮

|z|=1

dz

z

(z − 1)2(z + λ)

z2 + 2λz − 1
− 1 +

√
λ2 + 1 − λ (52)

= − 1

2iπ

∮

|z|=1

dz

z

(z − 1)2(z + λ)

z2 + 2λz − 1
− 1 +

√
λ2 + 1 − λ = 0. (53)

2.2 The General Case (α �= 0)

The preceding particular cases show clearly that the analysis of the singularities becomes
very complicated in the general case, as the new term proportional to e2α − 1 mixes x+
and x−. It is thus more appropriate to switch to an integral representation of the result. To
achieve this in a simple way, we make use of the preceding verifications. We define

I+(μ) = 1 + 2λ(e2α − 1)

x−x+ + 1
× 1 + ε(x−x+ − 1)/(x− − x+)

μ/2 + λ + εμ/(x+ − 1)
, (54)

and similarly I− using the rules x− ↔ x+ and μ ↔ −μ. Using the identity

(x− − x+)(x−x+ + 1)

(x+ − 1)(x− − 1)(x−x+ − 1)
= 2/μ, (55)

one shows that

g(α) = 1

4iπ

∮
dμμ

[
I ′+
I+

+ I ′−
I−

]
. (56)

2.2.1 Model I (ε = 0)

The simplest expression is provided by the system I (ε = 0) since in that case:

I± = 1 + 2λ(e2α − 1)

x−x+ + 1
× 1

±μ/2 + λ
. (57)

The integrand of (56) is of order μ−3, so the half circle of integration can be made infinite,
the only nonvanishing contribution being that of the vertical axis Re(μ) = 0. It is easy to
verify that on this axis x+ = x∗− and x−(−iy) = x−(iy)∗. As a result, one has

g(α) = 1

4π

∫ −∞

∞
dy y

[
1

I+
dI+
dy

+ 1

I−
dI−
dy

]
(58)

= 1

4π

∫ ∞

−∞
dy log(|I+|2) = 1

2π

∫ ∞

0
dy log(|I+|2). (59)

The explicit expression for |I+|2 is:

|I+(iy)|2 = 1 + 4λ2(e2α − 1)(x−x+ + e2α)

(x−x+ + 1)2(λ2 + y2/4)
(60)
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and

x−x+ = |x+|2 = 1

4

∣∣∣iy + 2 +
√

−y2 + 4iy

∣∣∣
2

(61)

=
y≥0

1

4

[(
2 +

√
y√
2

√
−y +

√
y2 + 16

)2

+
(

y +
√

y√
2

√
y +

√
y2 + 16

)2]
. (62)

To summarize, we can write the result as

g(α) = 2

π

∫ ∞

0
du log

(
1 + λ2(e2α − 1)(ψ(u) + e2α)

(ψ(u) + 1)2(λ2/4 + u2)

)
, (63)

ψ(u) =
(

1 + √
2

√
−u2 +

√
u4 + u2

)2

+
(

2u + √
2

√
u2 +

√
u4 + u2

)2

. (64)

A useful relation for ψ(u) can be deduced: from

1

x−x+ + 1
= 1 + x+/x−

(1 + x−x+)(1 + x+/x−)
= 1

4

[
1

x+
+ 1

x−

]
(65)

one gets

1

ψ(u) + 1
= 1

2
− 1√

2

√
−u2 +

√
u4 + u2. (66)

This suggests the change of variables u = 1/ sinh τ . This change gives the alternate expres-
sion:

g(α) = 2

π

∫ ∞

0
dτ

cosh τ

sinh2 τ
log

(
1 + λ2(e2α − 1)(coth2 τ

4 + e2α)

(coth2 τ
4 + 1)2( λ2

4 sinh2 τ + 1)
sinh2 τ

)
. (67)

A partial verification of the result can be done, via the computation of g′(0). This quantity
equals the mean injected power in the stationary state, which can be computed directly by
other means [20]. We have readily from (63):

g′(0) = 4λ2

π

∫ ∞

0

du

(ψ(u) + 1)(λ2/4 + u2)
(68)

= 2λ(1 + λ −
√

λ2 + 2λ), (69)

which is the expected result. Note that it is not surprising to find exactly the same result
as in [20] despite the fact that here the system is duplicated with respect to the one studied
in [20]. There, the energy associated with a domain wall was twice the value adopted here
(1 per domain wall).

2.2.2 Model II (ε = 1)

This model yields an expression slightly more complicated for g(α), due to an involved
expression for I+ (54). Some algebraic manipulations allow only a partial simplification:

I+(μ) = 1 + 2λ(e2α − 1)

μψ(ψ + 1)
× 2μψ − (ψ − 1)2

√
μ2 + 4μ + 2λ

, (70)



J Stat Phys (2007) 128: 1365–1382 1375

where ψ = x+x−. This yields the result

g(α) = 2

π

∫ ∞

0
du log

∣∣∣∣1 + λ(e2α − 1)

ψ + 1
× 1 + i(ψ − 1)2/8uψ

λ/2 + √−u2 + iu

∣∣∣∣
2

(71)

with ψ = ψ(u) given by (64). This seemingly irreducible complexity could have been ex-
pected, since in contrast with model I, the mean injected power is here not computable by
elementary operations (i.e. the dynamical equations for the correlators 〈σ0σi〉 are not closed).

3 The Large Deviation Functions

In this section, we discuss the properties of the ldf f (p) associated with the integrated
injected energy:

Prob(�/t = p) ∝
t→∞ exp(tf (p)), (72)

f (p) = min
α

(g(α) − αp). (73)

The typical shapes of the large deviation functions are plotted on Fig. 1. Their abscissae
are rescaled to align their maximum on 1. The missing information on 〈p〉 is plotted on
Fig. 2 for both models (obtained via 〈p〉 = g′(α = 0)). The mean injected power behaves
monotonously in both models (Fig. 2), but with a maximal asymptotic value twice larger (2)
for model II. We verified the consistency of this result by a direct simulation of the model II
(results not shown; for model I, we have the exact formula 〈p〉 = 2λ(λ + 1 − √

λ2 + 2λ)).
That model II induces an injection larger than model I is obvious: the spin s0 can switch back
spontaneously and swiftly just after the creation of two domain walls, putting the system
back in a state ready to accept anew a positive injection of energy; in model I, the domain

Fig. 1 (Color online) Typical shapes of the large deviation functions of model I (left) and II (right), for
various values of λ. The abscissae only are rescaled. For model II, λ = ∞ is not plotted due to the particular
analytical behaviour of f in that case (see text); however we believe λ = 10 to be close to the asymptotic case
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Fig. 2 (Color online) Mean
injected power as a function of λ

for the two models considered

Fig. 3 (Color online) Parameter
σ(λ) = |f ′′(〈p〉)| × 〈p〉2 as a
function of λ

walls have to move away diffusively before such a state can be reached. It is interesting to
note that for model II limλ→∞ g′(0) is not given by the simple limit taken inside the integral
(which would have given 〈p〉 = 1). We postpone the discussion on this peculiarity to the end
of the section.

The ldfs for both models have the interesting property that they have a finite limit when
p → 0: arbitrary small integrated injected energies “are not so rare”; this feature would a
priori favour the presence of a negative tail in the case where one averages over different
initial conditions (as described in [9]); whether it is or not the case here is an issue beyond
the scope of this paper.

The ldfs are apparently close to a parabola. This is of course not true, and the deviation
from the parabola is a rather important feature to look at. To this end, one defines σ(λ) =
|f ′′(〈p〉)| × 〈p〉2, which inverse is a measure of the relative fluctuations of � (up to a 1/

√
τ

factor). We see from Fig. 3 that σ(λ) increases gently with λ and reaches a constant value.
This is consistent with the shrinking of f with increasing λ to be seen on Fig. 1.
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Fig. 4 (Color online) Rescaled
large deviation functions for the
model I. Note that the curves for
λ = 0.1 and λ = ∞ are almost
identical, and this also true for
λ = 1 and λ = 5. This is related
to the nonmonotonous behaviour
of the parameter χ(λ), see text

Fig. 5 (Color online) Rescaled
large deviation functions for
λ = 2 in both models

We then use σ(λ) to rescale the ldfs so that the curvatures at the maximum are equal
to 1, namely consider f (p)/σ(λ) as a function of p/〈p〉. The results are plotted for model I
on Fig. 4, together with the reference parabola − 1

2 (p/〈p〉 − 1)2. Corresponding curves for
model II are very similar, as can be seen on Fig. 5, where the ldfs for both systems with
λ = 2 (maximum discrepancy of parameters χ , see later) are simultaneously plotted.

We remark that the ldf are rather different from a parabola, and display a marked
tilt counterclockwise. Interestingly enough, the magnitude of the tilt is not a monoto-
nous function of λ. This can be simply caught by inspecting χ(λ) = g′′′(0)g′(0)/g′′2(0),
the third coefficient of the Taylor expansion of the scaled ldf near the maximum:
f (p)/σ(λ) + 1

2 (p/〈p〉 − 1)2 � 1
6χ(p/〈p〉 − 1)3. As shown on Fig. 6, χ(λ) has a non-

monotonous behaviour with respect to λ, and mainly dictates the location of the asymptotic
tail. Note that this parameter is positive, in accordance with the counterclockwise tilt already
mentioned. The physical origin of these features is rather complicated. The tilt is mainly as-
sociated to the temporal correlations of the process, which are revealed in the statistics of
rare events only. The probability of an extra injection of energy is more likely than the op-
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Fig. 6 (Color online)
Asymmetry parameter χ(λ).
See text for details

Fig. 7 (Color online) a Repartition function of the domain wall nearest to the spin 0 for model I. The inset
shows the distribution function restricted (and rescaled in accordance) to the bulk domain walls. b Correlation
plot between the height of the first peak (position 1–2) of the rescaled repartition function and χ(λ). The line
is a linear fit

posite, because of a kind of positive feedback: if for a while, an extra amount of energy has
been already transfered into the system, the typical density of domain walls near the bound-
ary experiences a positive fluctuation; as a result, subsequent incoming domain walls are
more likely to eventually annihilate with an alter ego, instead of returning to the boundary
(conversely a negative fluctuation is hard to maintain due to a growing shortage of domain
walls to react with, see [9] for similar arguments).

That this positive feedback has a minimum is related to the structure of the stationary
state. On Fig. 7 is plotted the repartition function of the domain wall nearest to s0 in the
stationary state for model I (we restrict the discussion to model I for sake of simplicity)
and various values of λ—these pdfs were obtained numerically although the exact com-
putation is a priori tractable. It is seen that the probability for the first domain wall to be
between spin 1 and spin 2 (that is, next to the first possible domain wall, which so to speak
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Fig. 8 (Color online)
Nonequilibrium temperature
Tcurv(λ) = g′′(0)/2g′(0). See
text for details

does not belong to the bulk as it is directly affected by the boundary flips) is maximum for
λ ∼1–2 (and is maximum with respect to the subsequent locations). This property is also
true if one disregards the domain walls located in contact with the spin s0 and restricts one-
self to “inner” domain walls (see inset of Fig. 7). The correspondence between χ(λ) and
the rescaled height of the peak 1–2 can be made quantitative by a correlation plot (Fig. 7b),
where a linear relation between the two quantities can be approximately drawn.

Thus, a density fluctuation is typically localized very near the boundary especially for
λ ∼ 2, and this proximity works against the correlations and the positive feedback effect
explained above, as after just one move these domain walls can disappear through a negative
energy injection event; this explains roughly the minimum of χ(λ) near λ ∼ 2. Finally one
explains also the less pronounced effect for model II by the fact that the two halves of the
system see each other in that case and domain walls from one side can pervade the other: this
permeability probably reduces the correlations between density fluctuations and injection,
thereby decreasing the asymmetry parameter.

Interestingly enough, this parameter χ has a similar behaviour as the nonequilibrium
“temperature” one can define for such dissipative NESS from f (p) [10, 11]: Tcurv =
g′′(0)/2g′(0). Figure 8 shows this quantity for both models, and it is clear that this char-
acteristic energy constructed from the fluctuations of � is sensitive to both the temporal
correlations of the process (as χ ) and the averages quantities like the mean injected power.
As such, it bears a rather complicated physical content, in contrast with an ordinary temper-
ature concept.

Before to conclude, it is worth mentioning a mathematical subtlety of model II: the naive
λ → ∞ limit yields

g(α) � 2

π

∫ ∞

0
du log

∣∣∣∣1 + 2(e2α − 1)(1 + i(ψ − 1)2/8uψ)

ψ + 1

∣∣∣∣
2

, (74)

whence one would have

g′(0) = 〈p〉 = 16

π
Re

(∫ ∞

0
du

1 + i(ψ − 1)2/8uψ

ψ + 1

)
(75)

= 1. (76)
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But this is not the correct result (〈p〉 = 2), and it is easy to see why: the exact formula for
finite λ is, provided

√−u2 + iu = R(u) + iI (u):

g′(0) = 8λ

π

∫ ∞

0
du

λ/2 + R + I (ψ − 1)2/8uψ

(ψ + 1)([λ/2 + R]2 + I 2)
, (77)

R(u) = 1√
2

√
−u2 +

√
u4 + u2, (78)

I (u) = 1√
2

√
u2 +

√
u4 + u2. (79)

The missing part comes from the third term of the numerator: I ∼ u for large u, hence the
associated integral is of order 1/λ and not 1/λ2 as naively expected. This problem is ulti-
mately due to the fact that an isolated pole exists for model II at the right hand side of (56)
(see Sect. 2), an analytical property extremely sensitive to the form of the approximants:
some sub-dominants terms are of primarily importance to keep the analytical structure un-
touched and makes allowance for the asymptotic locations of the singularities.

4 Conclusion

In this paper, we were able to compute exactly by fermionic techniques large deviation func-
tions of the injected power for two 1D models of classical spins driven by a T = 0 Glauber
dynamics in the bulk and a poissonian flip on the boundary. The results highlight the in-
fluence of the flipping rate on the low-frequency fluctuation properties of the injection; we
showed in particular that the third derivative of f is a sensible measure of the interplay
between on one hand density fluctuations and on the other hand the ability for the external
operator to transfer efficiently energy inside the system. By the way, we found and explained
why this third derivative (or equivalently the third cumulant of the time-integrated injected
energy) is always positive, a property surprisingly found also in conservative diffusive sys-
tems for the integrated current (see (4) in [17]); this similar behaviour is a bit surprising, as
inner dynamics of dissipative and conservative systems are by nature much different.

Acknowledgements We are much indebted to S. Aumaître, F. Cornu, S. Fauve and F. van Wijland for
fruitful discussions. This work was supported by the ANR project JCJC-CHEF.

Appendix

We give some details on the diagonalization of a Hamiltonian of the type:

H =
∑

n,m

[
c†
nAnmcm + 1

2
c†
nBnmc†

m + 1

2
cnDn,mcm

]
, (80)

where A is symmetric real and B and D antisymmetric real. We postulate the transformation

c† = V ξ † + Uξ, (81)

c = U ∗ξ † + V ∗ξ, (82)
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where U and V are 2N × 2N matrices. The fermionic structure is preserved if

UU ∗T + V V ∗T = 1, (83)

UV T + V UT = 0. (84)

It must be stressed that these equations are only 2N(2N + 1) independent relations among
2(2N)2 coefficients. Thus 2N(2N − 1) relations can still be imposed to the coefficients of
U and V .

Next, we can replace (81) into (80) and extract four different contributions: a contribution
made with terms ξξ (N(2N − 1) terms) and ξ †ξ † (N(2N − 1) terms) we want to get rid of:

1

2
(ξ †)T [V T AU ∗ − U ∗T AV + V T BV + U ∗T DU ∗](ξ †), (85)

1

2
(ξ)T [UT AV ∗ − V ∗T AU + UT BU + V ∗T DV ∗](ξ), (86)

this gives precisely the 2N(2N − 1) remaining relations on U and V (the matrices are
antisymmetric); thirdly a contribution ξ †ξ

(ξ †)T M(ξ) =
def

(ξ †)T

[
V T AV ∗ − UT AU ∗ + 1

2
(V T BU − UT BV )

+ 1

2
(U ∗T DV ∗ − V ∗T DU ∗)

]
(ξ). (87)

Our goal is to diagonalize this matrix. If this is possible, the diagonalization is completed us-
ing M = Q−1�MQ and ζ = Qξ, ζ † = Q−1T ξ †. But this is apparently not always possible,
as the inspection of M clearly shows. Two special situations allow however a diagonaliza-
tion: if B = −D, M is hermitian and therefore diagonalizable; if U and V can be found real,
M is symmetric and also diagonalizable. But the last case we cannot immediately recognize.
In the following we assume that a diagonalization of M can be completed.

There is a fourth term in the decomposition, which is a constant arisen from the commu-
tation ξξ † → ξ †ξ . This constant reads

Tr

[
UT AU ∗ + 1

2
UT BV + 1

2
V ∗T DU ∗

]
= −1

2
Tr(M) + 1

2
Tr(A), (88)

where relations among U and V were used. As a result, the Hamiltonian can be cast in the
following form:

H =
∑

q


q

(
ξ †
q ξq − 1

2

)
+ 1

2
Tr(A), (89)

where the 
q are the eigenvalues of M . This formula differs slightly from those presented
in [19] where the Tr(A) term is not written. It is interesting to see that the precise sign of 
q

is irrelevant, as far as the spectrum of H is concerned. The eigenvalues of H are actually
given by

1

2

(∑

q


qεq + Tr(A)

)
, (90)

where the εq are ±1.
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The preceding development essentially yields the conclusion embodied by the (89), pro-
vided that the diagonalization is possible. To study the diagonalization itself, it is particularly
clever to follow the route described in [19], where in (81), the roles of c and ξ are reversed.
Starting from (89) and using [H,ξq] = 
qξq , one gets the following result: the spectrum of
the matrix

M0 =
(

A B

D −A

)
(91)

is made with the eigenvalues of M . Actually it is exactly the spectrum of M plus its sym-
metric with respect to zero: multiplying μId − M0 by

(
(μ − A)−1 0

(μ + A)−1D(μ − A)−1 (μ + A)−1

)
, (92)

it is easily seen that the characteristic polynomial χM0(μ) = det(μId − M0) can be recast
into

χM0(μ) = χA(μ)χA(−μ)(−1)dim(A) det(1 − B(μ + A)−1D(μ − A)−1). (93)

Next, using the relation det(1 + AB) = det(1 + BA) valid whatever A and B , and det(A) =
det(AT ), it is readily seen that χM0(μ) = χM0(−μ). Thus, the spectrum of H is just dupli-
cated in M0 according to Sp(M0) = {Sp(H),−Sp(H)}.

The question of the diagonalization of H is closely related to the diagonalization of M0.
The case D = −B is explicit in this representation since in that case M0 is symmetric and
thus diagonalizable with real eigenvalues. Actually, as the nondiagonalization of a matrix is
an accident rather than the rule, we can consider these cases as exceptional.
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